Endocrine Disruptors and the Reproductive System

Jodi Anne Flaws, Ph.D.
University of Illinois
Department of Comparative Biosciences
jflaws@illinois.edu

333-7933

Overview

- What is an endocrine disruptor?
- Which environmental exposures are associated with reproductive toxicity?
- How do endocrine disruptors cause damage?

What is an endocrine disruptor?

"Exogenous agent that interferes with the synthesis, storage/release, transport, metabolism, binding, action, or elimination of natural hormones"

Endocrine System

Endocrine Disruptors

- Estrogens
- Androgens
- Anti-estrogens
- Anti-androgens
- Progestogens
- Adrenal toxins
- Thyrotoxic agents
- Aryl hydrocarbons
- Retinoids

Endocrine Disruptors

- Types of endocrine disruptors
 - Pharmaceutical agents
 - diethylstilbestrol, oral contraceptives
 - Pesticides
 - dichloro-diphenyl-trichloroethane (DDT), methoxychlor (MXC)
 - Flame retardants
 - polybrominated diphenyl ethers (PBDEs)
 - Plasticizers
 - phthalates, bisphenol A
 - Heavy metals
 - lead, mercury, arsenic
 - Environmental contaminants
 - dioxins, polychlorinated biphenyls (PCBs)

Pharmaceutical Agents: Diethylstibestrol (DES)

FMICAL COMPANY, INC., Brooklyn 26, N.Y.

After extensive clinical experience with des, Karnaky¹, Gitman and Koplowitz² and Ross³ as well as countless other clinicians wholeheartedly endorse the sound therapeutic necessity for the use of des in threatened abortion, habitual abortion and premature labor.

In a most recent publication, Karnaky has demonstrated that des, in massive doses (275 milligrams daily) provides optimum therapeutic results with maximum safety.

1. Kannaky, K. J., Amer. J. Chyl. & Gym. S. 212, 1747, 1931 i. 2. Girensky, L. and Explandra, A., New York State J. 1933 i. 1945. Girensky, L. and Explandra, A., New York State J. 1948. G. Girensky, L. and Explandra, J. N. Hott M.A. 43:29, 1948. G. 44:45. July 1948. G. 1948. July

DES versus Estradiol

Estradiol

DES

DES Story

- 1966-1969
 - 7 women between 15-22 developed clear cell adenocarcinoma of the vagina
- 1969-current
 - Serious adverse outcomes in male and female children of DES-exposed mothers
 - DES use limited; not manufactured in US

DES Events

- Females
 - Abnormalities of the reproductive tract
 - Uterus, Fallopian tubes
 - Infertility
 - Preterm labor
 - Fibroids
 - Cancer
 - Vagina, Breast
 - DES granddaughters

Males

- Cryptorchidism
- Abnormal semen
- Reduced fertility
- Testicular cancer
- Hypospadias

What did we learn from the DES story?

- Placenta does not always protect the fetus
 - We must use care with drugs given to pregnant women
- Not all estrogens are good for all tissues, species
- Chemicals can have delayed, long-lasting effects
- Chemicals can have transgenerational effects
- Nothing? A lot?
 - DES being used a prostate and breast cancer treatment in some countries
 - DES being used to treat dogs and cats with urinary incontinence

Pesticides

Pesticides

- Banned
 - Dichloro-diphenyltrichloroethane (DDT)
 - Kepone
 - Hexachlorocyclohexane
- Current
 - Atrazine
 - Endosulfan
 - Lindane
 - Methoxychlor

DDT

Pesticides

- Used on crops, lawns, gardens, homes, and pets
- Contaminate food and water
- Known reproductive toxicants in wildlife and humans
 - eggshell thinning in birds (DDT)
 - abnormal reproductive organs in alligators (DDE)
 - masculinization of rodents (kepone, DDT, methoxychlor)
 - spontaneous abortion in women
 - endometriosis in women
 - low conception rates in women
 - infertility in men and women
 - altered sex ratio in humans and fish (more females)

Lake Apopka Disaster

Lake Apopka Disaster

Methoxychlor

Sesame Control

MXC (64 mg/kg/day)

Methoxychlor

Hexachlorocyclohexane (HCH) and Miscarriage

Sources: Data from Noren and Meironyte, 2000; Meironyte, 2002; Sjodin et al., 2003; Mazdai et al., 2003 (median value*); Schecter et al., 2003; She et al., 2002; EWG, 2004; and Northwest Environment Watch, 2004.

PBDEs Breast Milk and Fat Samples Around the World

Source: Figure 3 in Schecter et al (EHP, August 2003), Table 1 in Mazdai et al (EHP, July 2003), and Table 1 in Kalantzi et al (EHP, July 2004)

Figure 1. Individual serum estradiol concentrations (bars indicate means) of F_1 female offspring on PND38 after treatment with vehicle or PBDE-47 (140 or 700 $\mu g/kg$ bw) to F_0 dams on GD6. PTU was administered on GD7-PND21.

^{*}p < 0.05, and **p < 0.01.

Figure 1. Thyroid weights in male (A) and female (B) adult offspring after exposure to low and high doses of PBDE-99 or A1254. Data shown are mean \pm SE (n = 8/group).

*p < 0.05 compared with control.

Plasticizers-Phthalates

• More than 18 billion pounds of phthalates are produced worldwide each year

• One of the top three contaminants present in human tissue (CDC report, 2005)

• Little to nothing is known about the health risks from everyday, environmental exposure

Phthalate Effects

- Have both anti-androgenic and estrogenic effects on development and sexual differentiation of the brain
- Chronic exposure in humans is associated with:
 - Decreased pregnancy rates
 - High rates of miscarriage
 - Pregnancy complications
 - Anemia
 - Toxemia
 - Preeclampsia
- Animal studies have shown that exposure inhibits ovarian and testicular synthesis of steroid hormones required for fertility

Prenatal Exposure to Phthalates

- Maternal exposure to phthalates results in a number of abnormalities of the male reproductive system
 - Reduced anogenital distance
 - Retained nipples
 - Undescended testes
 - Impaired reproductive behavior

Table 2. Median concentration [range (μ g/L)] of six phthalate monoesters in human breast milk samples 1997–2001, collected as additive aliquots from 1 to 3 months postnatally.

Phthalate	Denmark $(n = 65)$	Finland (<i>n</i> = 65)	<i>p</i> -Value	LOD (µg/L)	Detection rate (%)
mMP	0.10 (< 0.01-5.53)	0.09 (< 0.01-0.37)	0.355	0.01	95
mEP	0.93 (0.07-33.6)	0.97 (0.25-41.4)	0.976	0.01	100
mBP	4.3 (0.6-10,900)	12 (2.4-123)	0.0001	0.05	100
mBzP	0.9 (0.2-14)	1.3 (0.4-26)	0.0001	0.05	100
mEHP	9.5 (1.5-191)	13 (4.0-1,410)	0.001	0.10	100
miNP	101 (27-469)	89 (28-230)	0.056	0.50	100

Country differences were tested by Mann-Whitney U-test.

Figure 1. Mean AGI (mm/kg) in relation to boys' age at examination (months).

(DEHP exposed follicles)

Treatment Groups

Bisphenol A (BPA)

$$HO$$
 CH_3
 CH_3
 CH_3
 CH_3

- BPA was originally synthesized in 1891 and intended for use as a chemical estrogen to help prevent miscarriage
- Diethylstilbestrol (DES) was a more potent estrogen and used instead of BPA
- BPA was then employed by plastics manufacturers, and remains so today

BPA is Everywhere

Plastics is the country's third-largest manufacturing industry, producing nearly \$379 billion worth of goods each year (Society for the Plastics Industry).

BPA

- BPA is released from polycarbonate plastics and resins by:
 - Exposure to light
 - Heating
 - Aging
 - Coming into contact with acids and bases in cleaning products

BPA

- BPA is found in 95% of human urine samples
 - it is rapidly metabolized and excreted
- BPA has been detected in ovarian follicular fluid, suggesting the follicle may be a source of BPA exposure for the early fetus
- BPA is able to rapidly cross the placenta and enter fetal organs in rats

Effects of BPA

- BPA is an endocrine disrupting chemical:
 - Anti-androgenic effects
 - Antagonistic effects on thyroid hormone receptor
 - Agonist and antagonistic effects on estrogen receptors
 - Effects depend on the receptor subtype and cell type

Gender Specific Effects of BPA

- Reduced sperm production
- Altered prostate development
- Increased susceptibility to prostate cancer

- Altered mammary glands
- Decreased fertility
- Chromosomally abnormal oocytes

Prenatal Exposure to BPA in Rodents

BPA causes long-term adverse effects

- Multiple cystic follicles in the ovary
- Altered cyclicity
- Impaired ovulation in adult life
- Altered sexual differentiation of reproductive tissues
- Early puberty onset
- Weight gain
- Decreased anogenital distance
- Premature breast development

BPA

- BPA not banned in the US, but bans are being proposed
- FDA has approved BPA as a food additive, but this has been extensively criticized
- Marketing for baby bottles has been changed
 - BPA free or glass bottles

Environmental Contaminants

- Dioxins (TCDD)
 - paper bleaching
 - pesticidemanufacturing

Dioxins

- Humans
 - reproduction
 - possible birth defects
 - change in sex ratio
 (more females than males)
 - endometriosis
 - other
 - chloracne

- Animal models
 - reproduction
 - malformations
 - decreased sperm count
 - delayed puberty
 - endometriosis
 - behavior
 - demasculinized sexual behaviors
 - decreased reflexes
 - increased locomotor activity
 - other
 - wasting syndrome

Dioxins

Dioxins

BEFORE

AFTER

Yushchenko endured dioxin poisoning, likely by political foes, which, along with nearly killing him, left his skin severely disfigured. WILLisms.com

TCDD and Sex Ratio

Father's	Mother's concentrations of TCDD (ppt)	Number of children		Total	Sex
concentrations of TCCD (ppt)		Male	Female	children	ratio (95% CI)
Unexposed*	Unexposed*	31	20	51	0.608 (0.47–0.74)
>15	>15	96	121	217	0·442† (0·38–0·51)
>15	Unexposed*	81	105	186	0·436† (0·36–0·51)
Unexposed*	>15	120	100	220	0·545 (0·48–0·61)
Total		328	346	674	0.487

^{*}People living outside A, B, and R zones on July 10, 1976, and people living in these zones with serum TCDD concentrations less than or equal to 15 ppt. †Different from expected sex-ratio value of 0.514 at p=0.03.

Environmental Contaminants

- Polychlorinated biphenyls (PCBs)
 - banned in 1970s
 - electrical transformers
 - capacitators
 - hydraulic fluids
 - plasticizers
 - adhesives
 - persist in fish

Polychlorinated biphenyls (PCBs)

Humans

- reproduction
 - intrauterine growth retardation
 - hyperplasia in tissues
 - birth defects
- neurologic, behavior
 - impaired short-term memory
 - delayed psychomotor development
- thyroid
 - altered activity

Animal models

- reproduction
 - small litter size
 - abortions
 - early puberty
- neurologic, behavior
 - altered sex differentiation
 - cognitive deficits
- thyroid
 - altered activity

Pollutionissues.com

PCB LEVELS IN OTHER FOODS

*Puget Sound salmon tested higher. Source: FDA

SEATTLE POST-INTELLIGENCER

Table 3. Summary of epidemiologic results on perinatal PCB or dietary fish exposure in relation to neurodevelopmental outcomes.^a

Outcome	Age outcome measured	Location of population studied (reference)	Effect of ↑PCB intake	Expos Fish	ure measure used Measured PCBs
Neonatal reflexes	60 hr 60 hr 72 hr 14 days 36 hr	Michigan (119) Michigan (119) North Carolina (120) Netherlands (121) New York (122)	Hyporetlexia None Hyporetlexia None ^b Abnormal reflexes	1	***
Neonatal muscle tone	60 hr 72 hr 14 days 36 hr	Michigan (119) North Carolina (120) Netherlands (121) New York (122)	None Hypotonia Hypotonia ^c None	1	4
Psychomotor development ^d	6 months 36 months 3 months 42 months	North Carolina (<i>123</i>) North Carolina (<i>124</i>) Netherlands (<i>125</i>) Netherlands (<i>126</i>)	Delayed None Delayed None		* * * *
Mental development	6 months 3 months	North Carolina (<i>123</i>) Netherlands (<i>125</i>)	None None		4
10	11 years	Michigan (127)	Decreased		1
Visual recognition memory	7 months	Michigan (128)	Decreased		1
Short-term memory	4 years 4 years	Michigan (<i>129</i>) North Carolina (<i>130</i>)	Decreased None		4

Abbreviations: IQ, intelligence quotient; PCBs, polychlorinated bipherryls. Representative findings are shown from each study, for brevity all results from each study are not included. A relation with "neonatal optimality score," comprising reflex and tone components, was found for breast-fed children with PCBs measured in breast milk. However, with PCBs in cord blood as the exposure measure in the entire study group, including children who were not breast fed, however, a relation was not present. True only in breast-fed children, with PCBs measured in breast milk. Dutch neurologic exam findings for children (not neonates) are classified with psychomotor development results in this table.

Table 3. Neuropsychological out	able 3. Neuropsychological outcomes of human PCB studies.#							
Test	Age	Outcome	Exposure variable	References				
Congener-specific studies								
Oswego cohort								
NBAS	Birth	↓ Autonomic ↓ Habituation	7–9 chlorinated PCBs 7–9 chlorinated PCBs	Stewart et al. (2000)				
Fagan	6 months 12 months	↓ Fixation time ↓ Fixation time	Cord blood PCBs, 7–9 chlorinated PCBs Cord blood PCBs	Darvill et al. (2000) Darvill et al. (2000)				
German cohort		•		,,,				
Fagan	7 months	No effect		Winneke et al. (1998)				
Bayley scales	7 months	1 WDI	In ∑PCBs (138, 153, and 180) breast milk	Winneke et al. (1998)				
bayley states	18 months	No effect	111 Z1 000 1100, 100, and 100, broast 1111k	Walkowiak et al. (2001)				
	30 months	1 WDI	In ∑PCBs (138, 153, and 180) breast milk	Walkowiak et al. (2001)				
Kaufman ABC	42 months	↓ Mental processing	In SPCBs (138, 153, and 180) breast milk	Walkowiak et al. (2001)				
Kaulillali ADG	42 111011015	composite index	III Zrobs (130, 133, and 100) breast fillik	walkowiak et al. (2001)				
Faroe Islands cohort								
Boston Naming Test		↓ Performance	Cord blood PCBs	Grandjean et al. (2001)				
Auditory function		↑ Auditory thresholds	Cord blood PCBs	Grandjean et al. (2001)				
Noncongener-specific studies		· ·						
Michigan cohort								
Birth size/growth	Birth	Birth weight	Cord blood PCBs	Fein et al. (1984)				
		↓ Head circumference	Cord blood PCBs	, , ,				
		↓ Gestational age	Cord blood PCBs					
	5 months	↓ Body weight	Cord blood PCBs	Jacobson and Jacobson (1988)				
Bayley scales	5 months	No effect	0014 01004 1 000	Jacobson and Jacobson (1986)				
Fagan	7 months	1 Fixation time	Cord blood PCBs	Jacobson et al. (1985)				
McCarthy scales	4 years	↓ Verbal memory	Cord blood PCBs, breast milk PCBs	Jacobson et al. (1990a)				
Wiccai triy scales	+ yours	Numerical memory	Cord blood PCBs, breast milk PCBs	odcobsorret di. (1350d)				
		J Visual discrimination	Breast milk PCBs	Jacobson et al. (1992)				
		1 Short term memory	Cord blood PCBs	Jacobson et al. (1332)				
Birth size/growth	Aware	1 Body weight	Total cord PCBs	Jacobson et al. (1990b)				
birui size/growui	4 years			Jacobson et al. (1990b)				
WILCO D	11	↓ Activity	Child's total PCBs	Jacobson and Jacobson (1000)				
WISC-R	11 years	↓ Full-scale IQ ↓ Verbal IQ	Prenatal PCBs Prenatal PCBs	Jacobson and Jacobson (1996)				
North Carolina cohort		1 verbar id	FIGURAL FORS					
NBAS	Birth	L Morala Assa	Breast milk PCBs	Dance et al. (1000h)				
NBAS	BILIU	↓ Muscle tone	Breast milk PCBs	Rogan et al. (1986b)				
		↓ Activity						
B 1		↓ Reflexes	Breast milk PCBs	St. 1				
Bayley scales	6 months	↓ PDI	Breast milk PCBs	Gladen et al. (1988)				
	12 months	. ↓ PDI	Breast milk PCBs	Gladen et al. (1988)				
	18 months	No effect		Rogan and Gladen (1991)				
	24 months	↓ PDI	Breast milk PCBs	Rogan and Gladen (1991)				
McCarthy scales	3–5 years	No effect		Gladen and Rogan (1991)				

Abbreviations: ‡, decrease; †, increase; Bayley scales, Bayley Scales of Infant Development; Fagan, Fagan Test of Infant Intelligence; Kaufman ABC, Kaufman Assessment Battery for Children; McCarthy scales, McCarthy Scales of Children's Abilities; NBAS, Brazelton Neonatal Behavioral Assessment Scale; Wisc-R, Wechsler Intelligence Scales for Children-Revised. *Dutch cohort is summarized in Table 2.

PCBs and Normal Time to Conception

Consumption

Courval et al; 1999

How do agents disrupt/modulate the endocrine system?

Mechanisms of Damage

- Endocrine Disruption
 - mimic hormones
 - block hormones
 - trigger inappropriate hormone action

Mechanisms

Mechanisms of Toxicants

Mechanisms of Damage

- Damage reproductive tissues
 - ovary
 - uterus
 - oviducts
 - cervix
 - vagina
 - testes
 - epididymis
 - prostate

What can we do to avoid endocrine disruption?

- Awareness
- Screen and Regulate chemicals
 - prevention
- Regulate food and water
 - prevention
- Mechanistic studies
 - treatment

Summary

- We are exposed to many endocrine disrupting agents
- Endocrine disruptors may affect reproduction in wild-life and humans
- We need more studies to determine which chemicals affect reproduction and how such chemicals act
 - Prevention
 - Treatment
 - Policies